
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

Static and dynamic properties of smectic liquid crystal side chain polymers
Jens Riegera

a Theoretische Physik, Universität des Saarlandes, Saarbrücken, F. R. Germany

To cite this Article Rieger, Jens(1989) 'Static and dynamic properties of smectic liquid crystal side chain polymers', Liquid
Crystals, 5: 5, 1559 — 1565
To link to this Article: DOI: 10.1080/02678298908027791
URL: http://dx.doi.org/10.1080/02678298908027791

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/02678298908027791
http://www.informaworld.com/terms-and-conditions-of-access.pdf


LIQUID CRYSTALS, 1989, VOL. 5, NO. 5, 1559-1565 

Static and dynamic properties of smectic 
liquid crystal side chain polymers 

by JENS RIEGER 
Theoretische Physik, Universitat des Saarlandes, 6600 Saarbriicken, 

F.R. Germany 

On the basis of models for the conformation of liquid crystal side chain 
polymers in the smectic phase, some dynamic aspects of such systems are con- 
sidered using the reptation approach. The overall diffusion constants of the 
polymer along and perpendicular to the director of the side chains are derived. 

1. Introduction 
Liquid crystal side chain polymers (comb-like polymers) consist of a flexible 

'polymeric backbone to which the mesogenic side chains are attached via flexible 
relatively short spacers [l,  21. The mesogenic units are responsible for the occurrence 
of one or more of the typical liquid crystal phases, whereas the backbone supplies the 
samples with a mechanical stability unknown to classical liquid crystal samples. 
Recently much interest has developed in liquid crystal side chain polymers (LSP) both 
with a view to possible applications [3-51 and with regard to the more academic 
question [6-81 of how the competition between the tendency of the backbone to coil 
up and the tendency of the side chains to order in a mesophase balances out. 

In order to examine the static properties of LSP systems in the smectic (S,) phase 
the author proposed recently several models for the conformation of the backbone 
[9, 101. These models are briefly reviewed in $2 for a better understanding of $3, where 
a model for the dynamics of the backbone in the smectic phase is proposed. 

It is emphasized that the discussion is restricted to LSP systems where the side 
chains are oriented preferably perpendicular to the backbone. This is the smectic 
analogue to the nematic N, and N,, system according to Warner's classification [7],  
and implies explicitly that the N,,, systems which also seem to have a smectic counterpart 
[ l l ,  121 are excluded. 

2. Models for the main chain conformation 
The following experimental results are significant for the following considerations. 

(a) Small angle neutron experiments revealed that the radius of gyration R,,,, of 
the backbone along the director of the side chains is much smaller than the 
radius of gyration R,, perpendicular to that direction [13-161. 

(b) Both R,,, and R,,, are temperature dependent [14-161. 
(c) Wide angle neutron scattering data indicate that the backbone is mainly 

located between the smectic lamellae built by the side chains [17]. 
( d )  The smectic order is somewhat disturbed by the presence of the polymeric 

backbones [ 181. 

Very little is known yet about the small scale configurational properties of the 
backbone. I examined a hierarchy of conformation models [9] in order to see whether 
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1560 J.  Rieger 

it might be possible to differentiate between the models by comparison with the 
experimental data. It turned out, however, that despite the large difference of the 
underlying models (with respect to the available number of degrees of freedom) the 
difference in the final expression for the anisotropy factor a = Ri,,,/Ri,L is amazingly 
small. In the following the hierarchy of models is sketched and the final result 
recapitulated. For all details and for a discussion of the problem of non-equilibrium 
effects which in the author’s opinion are likely to occur in experiment, see [9]. 

The basic ingredients of the present models are the following. The backbone is 
modelled by a type of random walk of length L. This random walk is placed on a stack 
of parallel two-dimensional planes, viz. the planes between the smectic lamellae. The 
distance between two adjacent planes is D,  the lamellar thickness. The random walk 
is allowed to jump from one plane to its adjacent planes. Such a jump (crossing of the 
lameila) requires a random walk segment of length D and is weighted by a factor 
exp ( - BEc) in the respective configuration sum, where f l  = (kT) - ’  and Ec is the free 
energy of a crossing. Obviously Ec > 0, since the backbone with its appending side 
chains locally destroys the smectic order of the lamella through which it passes (unless 
the side chains fit in some way into register during such a crossing, which might be 
the case for the above mentioned N,,,-type LSP). 

The proposed hierarchy consists of the following types of random walks for the 
conformations of the backbone in the interlamellar planes. 

Model A (see figure 1 (a)). A k step segment of the backbone between two 
crossings is described by ideal random walk statistics, i.e. il = qt ,  where f2 is the 
number of possible configurations of the segment and qo is some coordination 

Figure 1. A typical (highly idealized) configuration of the backbone of a liquid crystal side 
chain polymer in the smectic phase is shown for (a) the case where the backbone 
is assumed to behave as a quasi-two dimensional random walk and (b) the case where 
the backbones of the polymers have a tendency to lie parallel to each other in one 
interlamellar plane. In the latter case backbones of other polymers lying in the respective 
planes are also depicted to cfarify the assumed bundle-like structure. The side chains 
are omitted for the sake of clarity. In both cases D is the thickness of one smectic 
lamella. 
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number. This model attributes to the backbone the maximum conceivable number of 
configurational degrees of freedom but is unrealistic, as it does not consider excluded 
volume effects. In a more sophisticated model such effects can be taken into account 
[9]. It should be recalled that excluded volume effects are dominant in two dimensions. 
The neglect of these effects is a severe shortcoming of model A and of models 
proposed by other authors [6, 191. We might consider the present simple random walk 
model as one extreme in the hierarchy of theoretically possible models. 

Model B (see figure 1 (b)). This is the other extreme case: the backbone describes 
a straight path in the interlamellar plane between two crossings. The directional fields 
of the paths in the different interlamellar planes are assumed to be uncorrelated. 
Furthermore, the backbone does not activate its configurational degrees of freedom 
contained in a segment between two crossings. This case is unrealistic in so far as the 
backbone will always show some lateral wiggling. Furthermore, a certain probability 
of crossing the backbones which are neighbouring in the interlamellar planes is always 
sure to occur. 

In [9] intermediate situations are also discussed. The important point now, how- 
ever, is that all easily conceivable models are assumed to lie between model A and 
model B with respect to the number of degrees of freedom of the backbone. Thus, the 
respective anisotropy factors are also assumed to lie between aA and aB, where a, is 
the anisotropy factor for model i ( i  = A, B). In [9] it is shown that ai can be 
represented in the general form 

Mi - q L Y D  exp (-pEi), 

where qA > 1, qB = 1 and E A  = E,, EB = 2Ec. The negative aspect implied by this 
result is that it seems to be impossible to decide from the knowledge of the small angle 
scattering data which model is realized in nature since, presently, almost nothing is 
known about the value of E,. However, the gratifying implication of this result to the 
development of theories on LSP in the smectic phase might be that it is indeed justified 
to use simple random walk models to describe approximately large scale static 
properties of these systems. 

It may be worthwhile to mention here that there exists experimental indication [20] 
on the small scale structure of the backbone, that the backbone exhibits in the 
interlamellar planes an approximately straight configuration. This result favours, of 
course, a model which is similar to our model B. 

3. A reptation model for the dynamics of the main chain 
On the basis of the models discussed earlier and using the reptation approach to 

the dynamics of the backbone, in the following a derivation of the diffusion constants 
for the centre of gravity of the LSP along the direction of the director (D , , )  and 
perpendicular to that direction (DL ) is proposed. (For all details concerning the 
reptation model the reader is referred to the original paper by deGennes [21] and to 
[22]). The following assumptions are made. 

(a)  The backbone diffuses longitudinally along a tube which is defined by the 
instantaneous configuration of the backbone. A justification for the use of the 
tube picture is given below. 

(6) This diffusion is mediated by so-called kinks [21], i.e. surplus length of the 
backbone diffusing along the curvilinear length of the backbone. 
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1562 J. Rieger 

Figure 2. The propagation of a kink along the backbone, and the resultant process of one side 
chain hopping over the topological barrier imposed by the backbone of another polymer, 
or by a remote segment of the same polymer to which the side chain is attached. 

(c) If a diffusional step involves a transfer of a side chain over the backbone of 
another LSP (see figure 2) the transition rate for such a process is given by 
rl = voexp(-PEH); in all other cases it is r,, = v,,, where vo is a typical 
frequency of the unhindered kink diffusion. EH is the activation energy of a 
jump process. 

( d )  Along the backbone on the average a fraction of ( K )  'monomers' are in a 
position where a diffusion of a kink involves a side chain jump. For model A 
it may be assumed that ( K ) ~  % ( n , ) / N  where ( n l )  is the average number 
of monomers of the backbone in the interlamellar planes and N is the number 
of backbone monomers ( L  = Na). For model B it is safe to assume a similar 
relationship with (K),., < ( I C ) ~ ,  since neighbouring backbones are much less 
frequently crossed than in the case of model A. 

With these assumptions the kink diflusion constant D, is readily found by map- 
ping the present model onto the one dimensional random barrier model [23] where it 
is assumed that the statistics of a particle (i.e. of a kink) are governed by the master 
equation 

&Pfl(O = %,,+ltPfl+,(t) - Pn(0l + w,-l,,IPn-I(O - P"(0l .  (2) 

Here p , ( t )  is the probability of finding a particle at position n at time t (n = 1, 
2, . . . , N - 1). denotes the transition rate between sites n and n + 1 and 
is a random variable. In the present model there are two transition rates: either 
w ~ , ~ + ~  = rl with probability ( K )  or con,,+, = r,, with probability 1 - ( K ) .  Accord- 
ing to [23] & is given by & ,., (r-I)-l, where (r-l) is the geometrical mean of the 
transition rates. For the present case we obtain 

Dk [(K)exp(PEH) + - < K > l - ' *  (3) 

Using the fact that for ( K )  = 0 the friction coefficient 5 of the whole backbone along 
the tube must scale as 5 = NCo, where To is the friction coefficient per monomer, we 

The respective diffusion constants D,, and D ,  are computed using the relationships 
obtain for the diffusion constant D* of the backbone along the tube D* = N - ' D  k. 

where AR, is the displacement of the centre of gravity due to the migration of one kink 
from one end of the backbone to the other [22], e, is the unit vector pointing into the 
direction of the director of the side chains and the overbars indicate time averaging. 
Assuming that in each time interval v,' a segment of the backbone of length 6 is 
transferred from one end of the backbone to the other it is found that the relationships 
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[AR, - eZ]‘ = J2R:/L2 and [AR, x e,]z = d2R:/L2 hold, where RT and R: are the 
mean-squared end-to-end distances in the z direction and the direction perpendicular 
to the z axis, respectively. Furthermore, making use of the relationship vo = 2D*/J2 
[22] we obtain the final results for the diffusion constants 

( 5 )  1 D, - kT[;’NP3R:[(~)exp(PEH) + 1 - ( K ) ] ~ ’ ,  

D,, - [R:/R:lD,. 

In the case of model A (the pure random walk model) we assume that N ( K )  - (nl) 
(see earlier). Considering furthermore the limiting case (ni) % ( n , ) ,  because of the 
small CI observed [13] we obtain 

Df - N-’exp(-PE,). (6)  

(7) 

In the case of model B we assumed earlier that (K) < 1 and find 

0: - NP3R:[(x) exp (P&) + I ] - ’ .  

For a comparison of these results with the expression for the diffusion constant in the 
case of a linear polymer in the isotropic melt, recall that the reptation model yields 
D - NP3R2 with R2 - N [21]. 

A further deviation from the usual reptation behaviour occurs when considering 
the local diffusion of one kink. In the reptation model it is explicitly assumed that the 
kinks diffuse unhindered [21]: ( r 2 )  - Dkt,  where (?) is the mean-squared distance 
that the kink travels along the polymer chain during a time interval t. In the random 
barrier model which we apply a long-time tail appears [23]: 

( r 2 )  - 2Dkt + ~ Y K ’ ” [ D ~ ~ ] ” ~  + . . . , (8) 

where y = D i ( ( T P 1  - (r-’))2). For our model we obtain 

(9) 
((K) - (iC)*)[l - 2A-I + A-21 

= A - ’  + ( . ) [2A-’  - 2A-2] + (IC)’[] - 24-’ + A - 2 ]  ’ 

where A = exp(flEH). In the two limiting cases where (IC) = 0 or (IC) = 1, y 
vanishes as expected, since in these cases there is no disorder along the backbone with 
regard to the transition rates. In our models we have 0 < (K)  < 1 and due to this 
fact the additional long-time tail in equation (8) comes into play. 

The modified diffusional behaviour derived above affects the form of the 
incoherent scattering function S(q, o) in the o range where NP2(r-’ )-’ < o 4 r, . 
Because of the non-gaussian statistics underlying equation (8) it seems to be impossible 
to derive an analytical expression for S(q, w).  This is a point that is open for future 
work. 

Finally, we make an attempt to justify the assumption of a tube, i.e. a region to 
which the backbone is confined because of energetic and topological reasons, and 
which prevents large transverse excursions of chain segments. (For a thorough 
discussion of the tube model, see [24].) The following points are noted: 

(a) Because of the large free energy penalty the backbone suffers if it tries, starting 
with a segment embedded in one interlamellar plane, to build a loop reaching 
an adjacent interlamellar plane with a part of this segment, transverse wiggling 
in the z direction is highly improbable when exceeding the length scale of a few 
Angstroms. 
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1564 J. Rieger 

(b) When considering the lateral wiggling in the interlamellar planes one has to 
discriminate between model A and model B. In the case of model A one finds 
that large excursions of segments of a backbone (say BBl) in the xy plane are 
prevented by the fact that very effective topological barriers are frequently 
built up at points where two backbones (neither of which may be identical with 
BBl) cross their paths (see the discussion in 82 of [9] and also figure 1 of [9]). 
In model B it is assumed that the state which minimizes the free energy of the 
LSP sample is given by a state where the backbones have a strong tendency 
to align in a bundle-like structure when regarding one interlamellar plane. 
Again it is very improbable (in the statistical sense) that the backbone will 
perform large random walk-like motions when looking at a segment between 
two adjacent crossings. 

(c)  An effect which competes, as regards relaxational processes, with ‘classical’ 
reptation along the tube is the tube renewal mechanism. This effect was 
discussed for the case of dense linear polymers: the chains which build the tube 
of one ‘test’ polymer are themselves reptating and therefore destroying locally 
parts of the tube if one of their ends passes the ‘test’ polymer [25,26]. Recently 
it was argued [26] that self-diffusion and relaxation of ordinary polymers are 
dominated by reptation if the polymers are sufficiently long, i.e. if L $ Lc, 
where Lc is the typical distance between entanglements. In that case it is 
assumed that the tube renewal effects are negligible. Because we discuss here 
the case of long backbones, it might be justified to neglect in the proposed 
model tube renewal effects. Furthermore, it must be stressed that the tube 
picture which is used in this paper differs somewhat from the usual conception. 
(i) In the direction parallel to the director the ‘walls’ of the tube are built by 
the repelling smectic lamellae. This is an energetic and not a topological effect. 
(ii) In the case of model B we assumed that there is, apart from topological 
hindering, an energetic barrier against large lateral excursions of the backbone 
in the plane perpendicular to the director, cf. point (b)  above. In the case of 
model A and ‘short’ backbones (L x Lc) tube renewal effects might be 
important. 

4. Conclusion 
The static properties of two extreme models for the conformation of liquid crystal 

side chain polymers in the smectic phase were reviewed. It was stressed that with 
regard to the anisotropy of the radii of gyration c1 = R:/Ri which is measured in 
small angle scattering experiments the difference between the resultant expressions for 
a obtained for these two models seems to be relatively small. Little is currently known 
about the microscopic parameters of the LSP systems as, for example, the crossing 
energy, and it is thus not possible to differentiate, from a knowledge of small angle 
scattering data, between the proposed models. The positive aspect of this finding is 
that it seems to be justified to use in a first approximation the simple random walk 
approach in further theoretical work on the statistics of LSP systems. 

On the basis of the two models and employing the reptation theory formulae 
for the diffusion constants of the polymer in the z direction perpendicular to the 
smectic lamellae and in the xy plane, respectively, were derived. It was obtained that 
Dll /D,  = R:/R: as expected, and furthermore a dependence of D,, and D ,  on the 
activation energy for the hopping of a side chain over the topological barrier of the 
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backbone of another LSP crossing the path of the LSP to which this side chain is 
attached. A material difference between the usual reptation approach and the present 
model was found, viz. the diffusion of a kink along the backbone is no longer given 
by a simple diffusion law but a long-time tail occurs which is assumed to affect the 
dynamical structure factor. . 

I thank Professor A. Holz for a critical reading of the manuscript. The financial 
support by the Deutsche Forschungsgemeinschaft within Sonderforschungsbereich 
130 and by the Volkswagen Stiftung is gratefully acknowledged. 
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